CSE538 - Spring 2025

Topics

- Parts-of-Speech
- **Dependency Parsing**
- Transition-based (Shift-Reduce algorithm)
- Introduction to Sequence Modeling

Parts-of-Speech

Open Class (also known as "content words"):

Nouns, Verbs, Adjectives, Adverbs

Parts-of-Speech

Open Class (also known as "content words"):

Nouns, Verbs, Adjectives, Adverbs

Function words:

Determiners, conjunctions, pronouns, prepositions mostly specify syntactic structure; express broad semantics connecting content words

Parts-of-Speech: The Penn Treebank Tagset

Table 2 The Penn Ti	reebank POS tagset.		
1. CC	Coordinating conjunction	25. TO	to
2. CD	Cardinal number	26. UH	Interjection
3. DT	Determiner	27. VB	Verb, base form
4. EX	Existential there	28. VBD	Verb, past tense
5. FW	Foreign word	29. VBG	Verb, gerund/present
6. IN	Preposition/subordinating		participle
	conjunction	30. VBN	Verb, past participle
7. JJ	Adjective	31. VBP	Verb, non-3rd ps. sing. present
8. JJR	Adjective, comparative	32. VBZ	Verb, 3rd ps. sing. present
9. JJS	Adjective, superlative	33. WDT	wh-determiner
10. LS	List item marker	34. WP	wh-pronoun
11. MD	Modal	35. WP\$	Possessive wh-pronoun
12. NN	Noun, singular or mass	36. WRB	wh-adverb
13. NNS	Noun, plural	37. #	Pound sign
14. NNP	Proper noun, singular	38. \$	Dollar sign
15. NNPS	Proper noun, plural	39	Sentence-final punctuation
16. PDT	Predeterminer	40. ,	Comma
17. POS	Possessive ending	41. :	Colon, semi-colon
18. PRP	Personal pronoun	42. (Left bracket character
19. PP\$	Possessive pronoun	43.)	Right bracket character
20. RB	Adverb	44. "	Straight double quote
21. RBR	Adverb, comparative	45. <i>'</i>	Left open single quote
22. RBS	Adverb, superlative	46. "	Left open double quote
23. RP	Particle	47. '	Right close single quote
24. SYM	Symbol (mathematical or scientific)	48. "	Right close double quote

Parts-of-Speech: The Penn Treebank Tagset

Worth Knowing:

Table 2 The Penn Treebank POS tagset.

Determiners Prepositions

Adjectives

Nouns

Adverbs

	leebalik 105 tagset.		
1. CC	Coordinating conjunction	25. TO	to
2. CD	Cardinal number	26. UH	Interjection
3. DT	Determiner	27. VB	Verb, base form
4. EX	Existential there	28. VBD	Verb, past tense
5. FW	Foreign word	29. VBG	Verb, gerund/present
6. IN	Preposition/subordinating		participle
	conjunction	30. VBN	Verb, past participle
7. JJ	Adjective	31. VBP	Verb, non-3rd ps. sing. present
8. JJR	Adjective, comparative	32. VBZ	Verb, 3rd ps. sing. present
9. JJS	Adjective, superlative	33. WDT	wh-determiner
10. LS	List item marker	34. WP	wh-pronoun
11. MD	Modal	35. WP\$	Possessive wh-pronoun
12. NN	Noun, singular or mass	36. WRB	wh-adverb
13. NNS	Noun, plural	37. #	Pound sign
14. NNP	Proper noun, singular	38. \$	Dollar sign
15. NNPS	Proper noun, plural	39	Sentence-final punctuation
16. PDT	Predeterminer	40. ,	Comma
17. POS	Possessive ending	41. :	Colon, semi-colon
18. PRP	Personal pronoun	42. (Left bracket character
19. PP\$	Possessive pronoun	43.)	Right bracket character
20. RB	Adverb	44. "	Straight double quote
21. RBR	Adverb, comparative	45. <i>'</i>	Left open single quote
22. RBS	Adverb, superlative	46. "	Left open double quote
23. RP	Particle	47. '	Right close single quote
24. SYM	Symbol (mathematical or scientific)	48. "	Right close double quote
	• • • • • • • • • • • • • • • • • • •		- · · · ·

Verbs

Parts-of-Speech: **Social Media Tagset**

(Gimpel et al., 2010)

Ot	Other open-class words				
V	verb incl. copula, auxiliaries (V*, MD)	might gonna ought couldn't is eats	15.1		
Α	adjective (J*)	good fav lil	5.1		
R	adverb (R*, WRB)	2 (i.e., too)	4.6		
!	interjection (UH)	lol haha FTW yea right	2.6		
Ot	her closed-class words				
D	determiner (WDT, DT, WP\$, PRP\$)	the teh its it's	6.5		
Ρ	pre- or postposition, or subordinating conjunction (IN, TO)	while to for 2 (i.e., to) 4 (i.e., for)	8.7		
&	coordinating conjunction (CC)	and n & + BUT	1.7		
Т	verb particle (RP)	out off Up UP	0.6		
X	existential <i>there</i> , predeterminers (EX, PDT)	both	0.1		
Y	X + verbal	there's all's	0.0		

Tag	g D	escription	Examples	%
No	mina	l, Nominal + Verbal		
N	com	mon noun (NN, NNS)	books someone	13.7
0	-	noun (personal/WH; not sessive; PRP, WP)	it you u meeee	6.8
S	non	ninal + possessive	books' someone's	0.1
^		ber noun (NNP, NNPS)	lebron usa iPad	6.4
Ζ		per noun + possessive	America's	0.2
L		ninal + verbal	he's book'll iono (= I don't know)	1.6
Μ	prot	ber noun + verbal	Mark'll	0.0
	1 1			
	Tw	itter/online-specific		
	#	hashtag (indicates topic/category for tweet)	#acl	1.0
	@	at-mention (indicates	@BarackObama	4.9
		another user as a recipient of a tweet)		
	~	of a tweet) discourse marker, indications of continuation of a message across	RT and : in retweet construction RT @user : hello	3.4
	~ U	of a tweet) discourse marker, indications of continuation	construction RT	3.4
		of a tweet) discourse marker, indications of continuation of a message across multiple tweets	construction RT @user : hello	
	UE	of a tweet) discourse marker, indications of continuation of a message across multiple tweets URL or email address	construction RT @user : hello http://bit.ly/xyz	1.6
	UE	of a tweet) discourse marker, indications of continuation of a message across multiple tweets URL or email address emoticon	construction RT @user : hello http://bit.ly/xyz	1.6
	U E Mi	of a tweet) discourse marker, indications of continuation of a message across multiple tweets URL or email address emoticon scellaneous	construction RT @user : hello http://bit.ly/xyz :-) :b (: <3 o_O 2010 four 9:30	1.6 1.0

),,,..;,``) **G** other abbreviations, foreign ily (I love you) wby 1.1 words, possessive endings, (what about you) 'S symbols, garbage (FW, · --> POS, SYM, LS) awesome...I'm

POS Tagging: Applications

- Resolving ambiguity (speech: "lead")
- Shallow searching: find noun phrases
- Speed up parsing
- Use as feature (or in place of word)

POS Tagging: Applications

- Resolving ambiguity (speech: "lead")
- Shallow searching: find noun phrases
- Speed up parsing
- Use as feature (or in place of word)

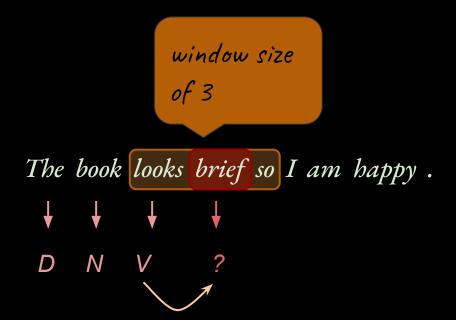
• Understand what modern deep learning methods are dealing with implicitly.

Approach like we did word sense disambiguation...

The book looks brief so I am happy .

The book looks brief so I am happy . D

The book looks brief so I am happy . ↓ ↓ D N


The book looks brief so I am happy . $\downarrow \downarrow \downarrow \downarrow$ D N ?

The book looks brief so I am happy . $\downarrow \qquad \downarrow \qquad \downarrow \qquad \downarrow$ D N V

The book looks brief so I am happy . $\downarrow \quad \downarrow \quad \downarrow \quad \downarrow$ D N V A

The book looks brief so I am happy . $\downarrow \downarrow \downarrow \downarrow \downarrow \downarrow$ D N V ?

window size of 3 The book looks brief so I am happy . $\downarrow \downarrow \downarrow \downarrow \downarrow$ D N V ?

window size of 3 The book looks brief so I am happy . $\downarrow \downarrow \downarrow \downarrow \downarrow$ D N V ? $P(pos_i = 'N'/word_i = "brief") = 0.3$

window size of 3 The book looks brief so I am happy. $P(pos_{i} = 'N'/word_{i} = "brief") = 0.3$ D ? N $P(pos_{i} = 'V' | word_{i} = "brief") = 0.4$ $P(pos_{i} = 'A' | word_{i} = "brief") = 0.3$

window size of 3 The book looks brief so I am happy. P(p = M'/w = brief) = .30? D N P(p = V'/w = brief) = .40P(p = A'/w = brief) = .30

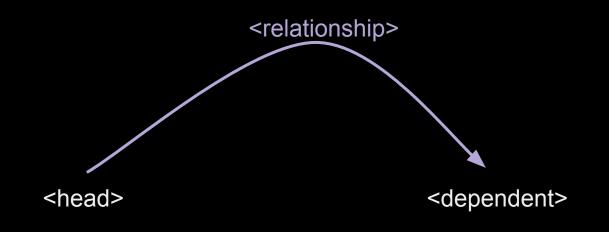
window size of 3 The book looks brief so I am happy. $P(p = N'/w = brief, w_{i=1} = looks, w_{i=1} = so) = ??$? D N $P(p = V' | w = brief, w_{i=1} = looks, w_{i=1} = so) = ??$ $P(p = A'/w = brief, w_{i=1} = looks, w_{i=1} = so) = ??$

window size of 3 The book looks brief so I am happy . $\downarrow \downarrow \downarrow \downarrow \downarrow$ D N V ? $P(p_i = N'/w_i = brief, w_{i-1} = looks, w_{i+1} = so) = .005$ $P(p_i = N'/w_i = brief, w_{i-1} = looks, w_{i+1} = so) = .005$ $P(p_i = N'/w_i = brief, w_{i-1} = looks, w_{i+1} = so) = .005$ $P(p_i = A'/w_i = brief, w_{i-1} = looks, w_{i+1} = so) = .99$

 \square

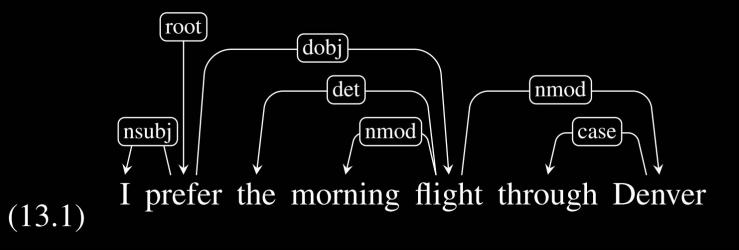
N

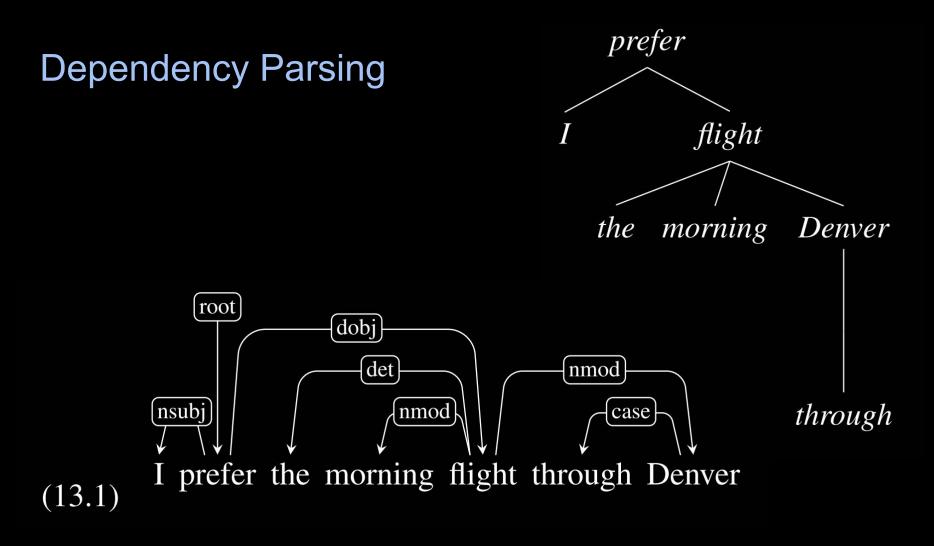
More likely, because we haven't seen this context before.


The book looks brief so I am happy.

?

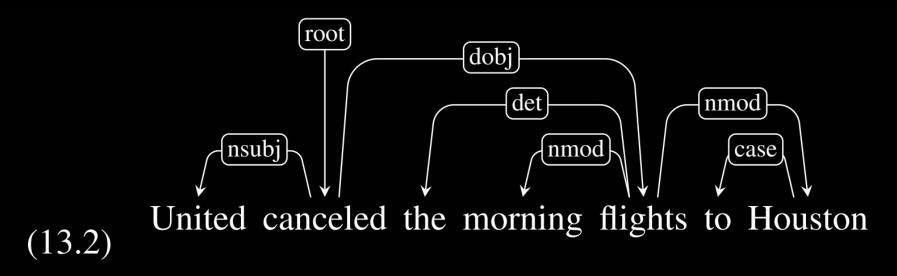
window size


of 3


 $P(p_{i}='N'/w_{i}=brief,w_{i-1}=looks,w_{i+1}=so) = .3$ $P(p_{i}='V'/w_{i}=brief,w_{i-1}=looks,w_{i+1}=so) = .4$ $P(p_{i}='A'/w_{i}=brief,w_{i-1}=looks,w_{i+1}=so) = .3$

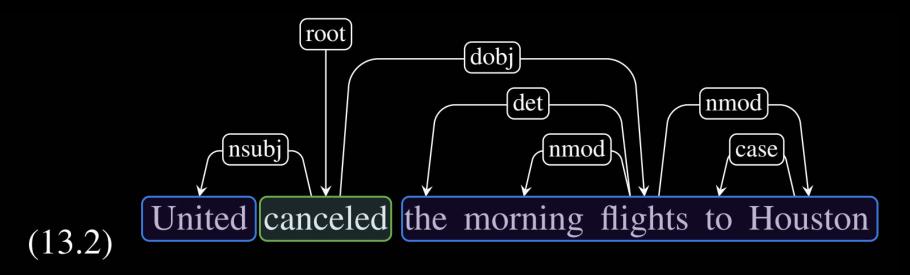
dependency -- binary asymmetrical relation between tokens

(13.1) I prefer the morning flight through Denver

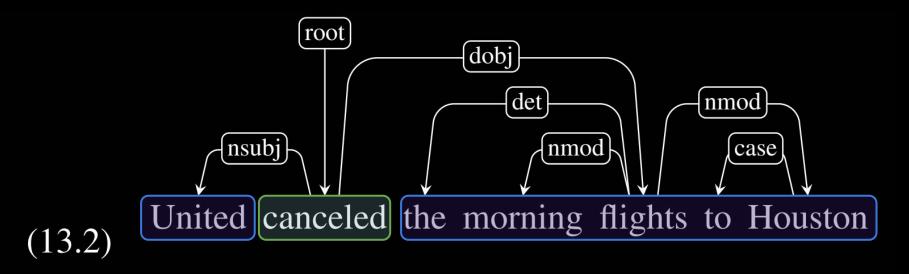

Clausal Argument Relations	Description	
NSUBJ	Nominal subject	
DOBJ	Direct object	
IOBJ	Indirect object	
ССОМР	Clausal complement	
ХСОМР	Open clausal complement	
Nominal Modifier Relations	Description	
NMOD	Nominal modifier	
AMOD	Adjectival modifier	
NUMMOD	Numeric modifier	
APPOS	Appositional modifier	
DET	Determiner	
CASE	Prepositions, postpositions and other case markers	
Other Notable Relations	Description	
CONJ	Conjunct	
CC	Coordinating conjunction	
Figure 13.2 Selected dependence	ey relations from the Universal Dependency set. (de Marn-	
effe et al., 2014) (From	SLP 3rd ed., Jurafsky and Martin 2018)	

Clausal Argument Relations	Relation	Examples with <i>head</i> and dependent
NSUBJ	NSUBJ	United <i>canceled</i> the flight.
DOBJ	DOBJ	United <i>diverted</i> the flight to Reno.
IOBJ		We <i>booked</i> her the first flight to Miami.
CCOMP	IOBJ	We <i>booked</i> her the flight to Miami.
XCOMP	NMOD	We took the morning <i>flight</i> .
Nominal Modifier Relations	AMOD	Book the cheapest <i>flight</i> .
NMOD		
AMOD	NUMMOD	Before the storm JetBlue canceled 1000 <i>flights</i> .
NUMMOD	APPOS	<i>United</i> , a unit of UAL, matched the fares.
APPOS	DET	The <i>flight</i> was canceled.
DET		Which <i>flight</i> was delayed?
CASE	CONJ	We <i>flew</i> to Denver and drove to Steamboat.
Other Notable Relations	CC	We flew to Denver and <i>drove</i> to Steamboat.
CONJ	CASE	Book the flight through Houston.
CC	Figure 13.3	Examples of core Universal Dependency relations.

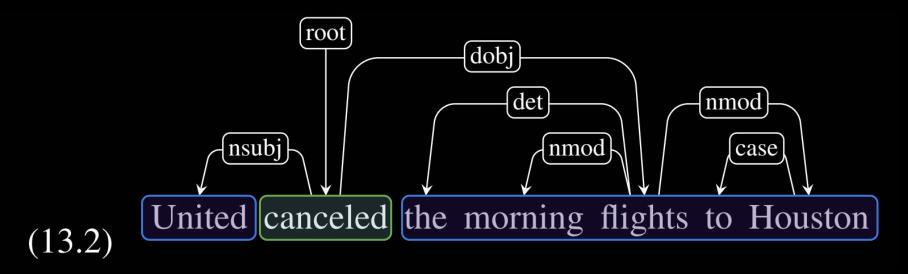
Verbal Predicate -- like a function, takes arguments: "United" and "the flight" in this case.


Clausal Argument Relations	Relation	Examples with <i>head</i> and dependent
NSUBJ	NSUBJ	United <i>canceled</i> the flight.
DOBJ	DOBJ	United <i>diverted</i> the flight to Reno.
IOBJ		We <i>booked</i> her the first flight to Miami.
CCOMP	IOBJ	We <i>booked</i> her the flight to Miami.
XCOMP	NMOD	We took the morning <i>flight</i> .
Nominal Modifier Relations	AMOD	Book the cheapest <i>flight</i> .
NMOD	NUMMOD	Before the storm JetBlue canceled 1000 <i>flights</i> .
AMOD		
NUMMOD	APPOS	<i>United</i> , a unit of UAL, matched the fares.
APPOS	DET	The <i>flight</i> was canceled.
DET		Which <i>flight</i> was delayed?
CASE	CONJ	We <i>flew</i> to Denver and drove to Steamboat.
Other Notable Relations	CC	We flew to Denver and <i>drove</i> to Steamboat.
CONJ	CASE	Book the flight through Houston.
CC	Figure 13.3	Examples of core Universal Dependency relations.

Dependency Parsing -- Verbal Predicates

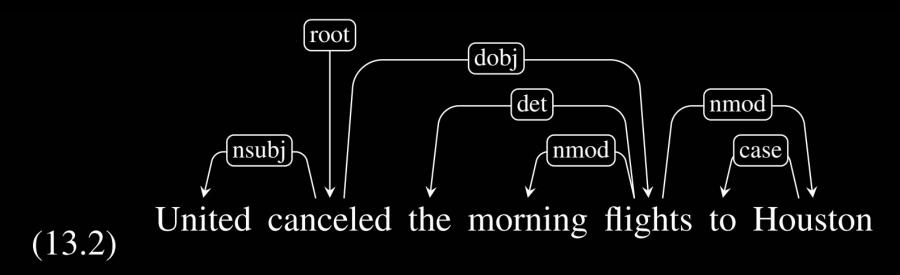

Dependency Parsing -- Verbal Predicates

cancel("United", "the morning flights to Houston")

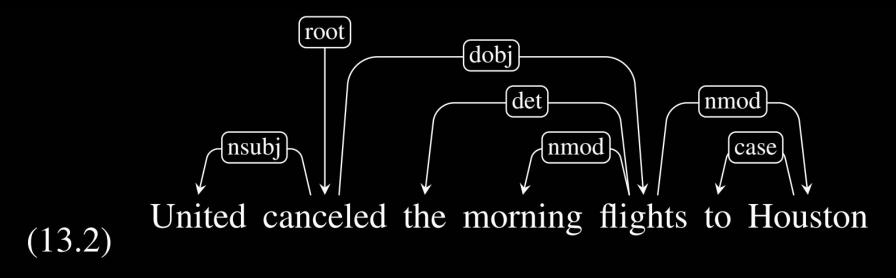

Dependency Parsing -- Verbal Predicates

to_call_off("United", "the morning flights to Houston")

Dependency Parsing -- Verbal Predicates Semantic Roles


to_call_off(agent="United", event="the morning flights to Houston")

Dependency Parsing -- How to Represent?


A Graph: G = [(V1, A1), (V2, A2), ...] (vertices and arcs) Restrictions:

?

A Graph: G = [(V1, A1), (V2, A2), ...] (vertices and arcs) Restrictions:

- 1) Single designated ROOT with no incoming arcs
- 2) Every vertex only has one head (parent, governer); i.e. only one incoming arc
- 3) unique path from ROOT to every vertex

Inspired by "Shift-reduce parsing" -- process one word at a time, using a stack to keep some sort of memory.

Elements:

- S: stack, initialized with "ROOT"
- *B*: input buffer, initialized with tokens (w1, w2,) of sentence
- *A:* set of dependency arcs, initialized empty
- *T:* Actions, given *wi* (next token in stack)

Inspired by "Shift-reduce parsing" -- process one word at a time, using a stack to keep some sort of memory.

Elements:

- S: stack, initialized with "ROOT"
- *B*: input buffer, initialized with tokens (w1, w2,) of sentence
- *A:* set of dependency arcs, initialized empty
- *T:* Actions, given *wi* (next token in stack)
 - shift(B,S): move w from B to S
 - *left-arc(S,A):* make top of stack **head** of next item: add to A; remove dependent from stack
 - *right-arc(S,A):* make top of stack **dependent** of next item: add to A; remove dep from stack

Using discriminative classifiers (i.e. logistic regression) to make decisions.

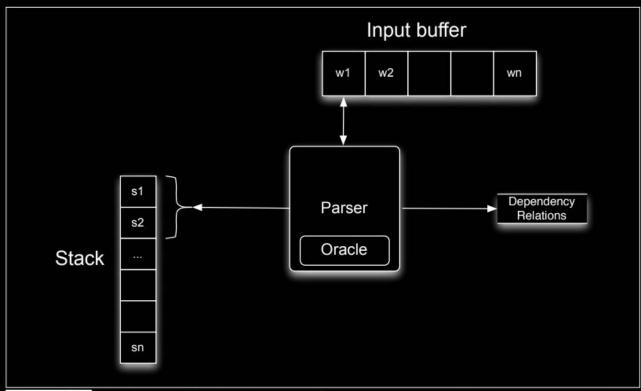


 Figure 13.5
 Basic transition-based parser. The parser examines the top two elements of the stack and selects an action based on consulting an oracle that examines the current configuration.

 (From SLP 3rd ed., Jurafsky and Martin 2018)

tion.

function DEPENDENCYPARSE(*words*) **returns** dependency tree state \leftarrow {[root], [*words*], [] } ; initial configuration **while** *state* **not final** $t \leftarrow ORACLE(state)$; choose a transition operator to apply state \leftarrow APPLY(*t*, *state*) ; apply it, creating a new state **return** *state*

(13.5) Book me the morning flight

Let's consider the state of the configuration at Step 2, after the word *me* has been pushed onto the stack.

Stack	Word List	Relations
[root, book, me]	[the, morning, flight]	

The correct operator to apply here is RIGHTARC which assigns *book* as the head of *me* and pops *me* from the stack resulting in the following configuration.

Stack	Word List	Relations
[root, book]	[the, morning, flight]	$(book \rightarrow me)$

Step	Stack	Word List	Action	Relation Added
0	[root]	[book, me, the, morning, flight]	SHIFT	

shift(B,S): move w from B to S

left-arc(S,A): make top of stack **head** of next item: add to A; remove dependent from stack

Step	Stack	Word List	Action	Relation Added
0	[root]	[book, me, the, morning, flight]	SHIFT	
1	[root, book]	[me, the, morning, flight]	SHIFT	

shift(*B*,*S*): move w from *B* to *S*

left-arc(S,A): make top of stack **head** of next item: add to A; remove dependent from stack

Step	Stack	Word List	Action	Relation Added
0	[root]	[book, me, the, morning, flight]	SHIFT	
1	[root, book]	[me, the, morning, flight]	SHIFT	
2	[root, book, me]	[the, morning, flight]	RIGHTARC	$(book \rightarrow me)$

shift(*B*,*S*): move w from *B* to *S*

left-arc(S,A): make top of stack **head** of next item: add to A; remove dependent from stack

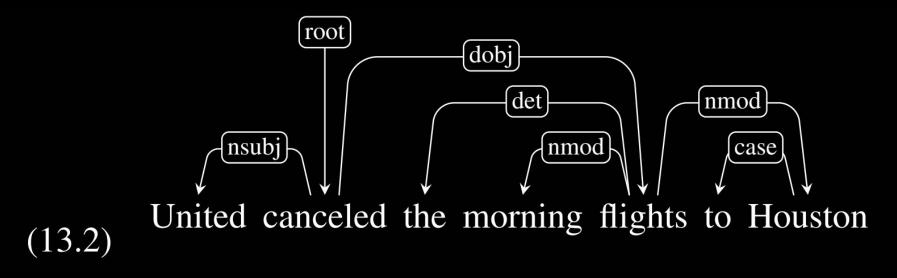
Step	Stack	Word List	Action	Relation Added
0	[root]	[book, me, the, morning, flight]	SHIFT	
1	[root, book]	[me, the, morning, flight]	SHIFT	
2	[root, book, me]	[the, morning, flight]	RIGHTARC	$(book \rightarrow me)$
3	[root, book]	[the, morning, flight]	SHIFT	
4	[root, book, the]	[morning, flight]	SHIFT	
5	[root, book, the, morning]	[flight]	SHIFT	

shift(*B*,*S*): move w from *B* to *S*

left-arc(S,A): make top of stack **head** of next item: add to A; remove dependent from stack

Step	Stack	Word List	Action	Relation Added
0	[root]	[book, me, the, morning, flight]	SHIFT	
1	[root, book]	[me, the, morning, flight]	SHIFT	
2	[root, book, me]	[the, morning, flight]	RIGHTARC	$(book \rightarrow me)$
3	[root, book]	[the, morning, flight]	SHIFT	
4	[root, book, the]	[morning, flight]	SHIFT	
5	[root, book, the, morning]	[flight]	SHIFT	
6	[root, book, the, morning, flight]	0	LEFTARC	$(morning \leftarrow flight)$

shift(*B*,*S*): move w from *B* to *S*


left-arc(S,A): make top of stack **head** of next item: add to A; remove dependent from stack

Step	Stack	Word List	Action	Relation Added
0	[root]	[book, me, the, morning, flight]	SHIFT	
1	[root, book]	[me, the, morning, flight]	SHIFT	
2	[root, book, me]	[the, morning, flight]	RIGHTARC	$(book \rightarrow me)$
3	[root, book]	[the, morning, flight]	SHIFT	
4	[root, book, the]	[morning, flight]	SHIFT	
5	[root, book, the, morning]	[flight]	SHIFT	
6	[root, book, the, morning, flight]	0	LEFTARC	$(morning \leftarrow flight)$
7	[root, book, the, flight]	0	LEFTARC	$(\text{the} \leftarrow \text{flight})$
8	[root, book, flight]	0	RIGHTARC	$(book \rightarrow flight)$
9	[root, book]	0	RIGHTARC	$(root \rightarrow book)$
10	[root]	0	Done	

Figure 13.7 Trace of a transition-based parse.

A Graph: G = [(V1, A1), (V1, A2), ...] (vertices and arcs) Restrictions:

- 1) Single designated ROOT with no incoming arcs
- 2) Every vertex only has one head (parent, governor); i.e. only one incoming arc
- 3) unique path from ROOT to every vertex

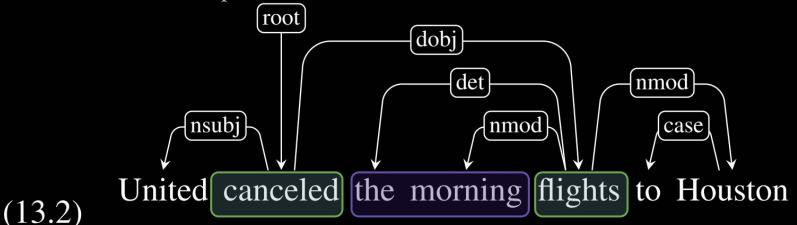


A Graph: G = [(V1, A1), (V1, A2), ...] (vertices and arcs) Restrictions:

- 1) Single designated ROOT with no incoming arcs
- 2) Every vertex only has one head (parent, governor); i.e. only one incoming arc
- 3) unique path from ROOT to every vertex

Projectivity: Given head, dependent; for every word between head and dependent

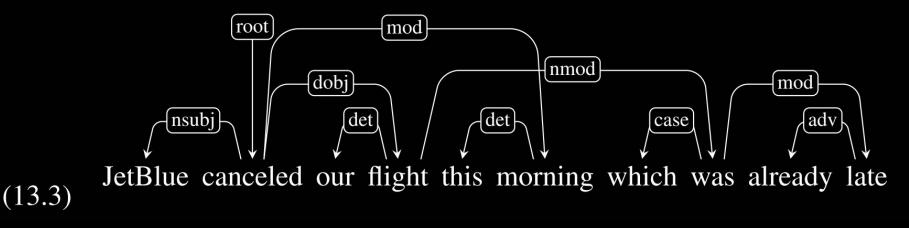
there exists a path from head to that word.



A Graph: G = [(V1, A1), (V1, A2), ...] (vertices and arcs) Restrictions:

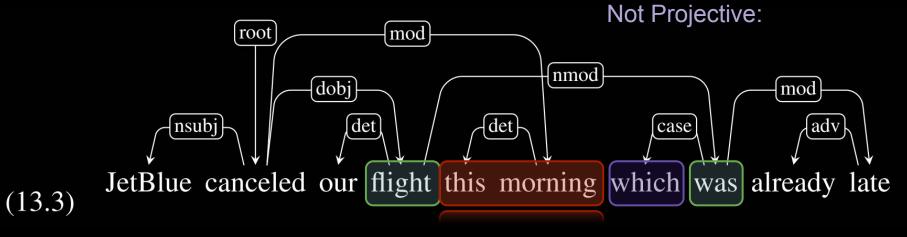
- 1) Single designated ROOT with no incoming arcs
- 2) Every vertex only has one head (parent, governor); i.e. only one incoming arc
- 3) unique path from ROOT to every vertex

Projectivity: Given head, dependent; for every word between head and dependent


there exists a path from head to that word.

A Graph: G = [(V1, A1), (V1, A2), ...] (vertices and arcs) Restrictions:

- 1) Single designated ROOT with no incoming arcs
- 2) Every vertex only has one head (parent, governor); i.e. only one incoming arc
- 3) unique path from ROOT to every vertex


Projectivity: Given head, dependent; for every word between head and dependent there exists a path from head to that word.

A Graph: G = [(V1, A1), (V1, A2), ...] (vertices and arcs) Restrictions:

- 1) Single designated ROOT with no incoming arcs
- 2) Every vertex only has one head (parent, governor); i.e. only one incoming arc
- 3) unique path from ROOT to every vertex

Projectivity: Given head, dependent; for every word between head and dependent there exists a path from head to that word.

A Graph: G = [(V1, A1), (V1, A2), ...] (vertices and arcs) Restrictions:

- 1) Single designated ROOT with no incoming arcs
- 2) Every vertex only has one head (parent, governor); i.e. only one incoming arc
- 3) unique path from ROOT to every vertex
- *Projectivity:* Given head, dependent; for every word between head and dependent there exists a path from head to that word.

<u>Why do we care?</u> Dependency trees from Context-Free Grammars are guaranteed to be projective; Thus, transition based techniques are certain to have errors occasionally on non-projective dependency graphs.

From Syntax to Semantics

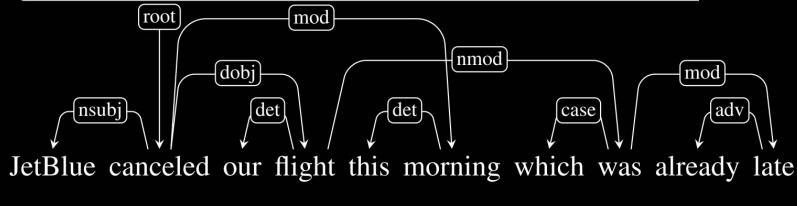
- Words have many meanings.
 - Context is key!
- **To organize Context:** Verbs as functions (predicates) that take arguments.
 - Verbal predicates: Syntactic arguments fulfill semantic roles
- **Simple approach**: Represent relationships between pairs of words.
 - **Dependency Parsing:** each word has one head
 - Verbs as head of arguments => implies *semantic roles*
 - Easily constructed through 3 actions of shift-reduce parsing.

Takeaway: There is an interplay between word meaning and sentence structure!

Thematic Role	Definition
AGENT	The volitional causer of an event
EXPERIENCER	The experiencer of an event
FORCE	The non-volitional causer of the event
ТНЕМЕ	The participant most directly affected by an event

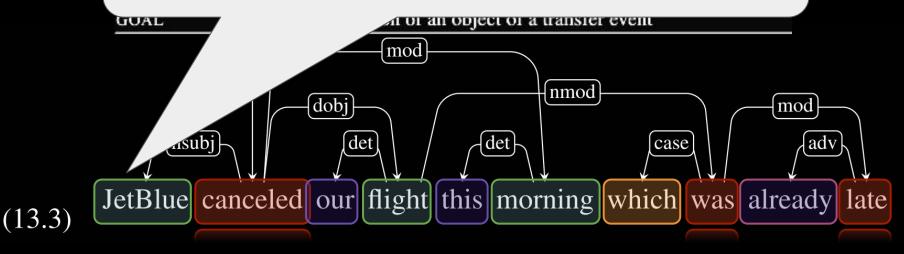
Thematic Role	Definition
AGENT	The volitional causer of an event
EXPERIENCER	The experiencer of an event
FORCE	The non-volitional causer of the event
THEME	The participant most directly affected by an event

Canel(Agent='JetBlue', Theme='our flight') JetBlue canceled our flight


Thematic Role	Definition
AGENT	The volitional causer of an event
EXPERIENCER	The experiencer of an event
FORCE	The non-volitional causer of the event
THEME	The participant most directly affected by an event
RESULT	The end product of an event
CONTENT	The proposition or content of a propositional event
INSTRUMENT	An instrument used in an event
BENEFICIARY	The beneficiary of an event
SOURCE	The origin of the object of a transfer event
GOAL	The destination of an object of a transfer event

Canel(Agent='JetBlue', Theme='our flight')

JetBlue canceled our flight

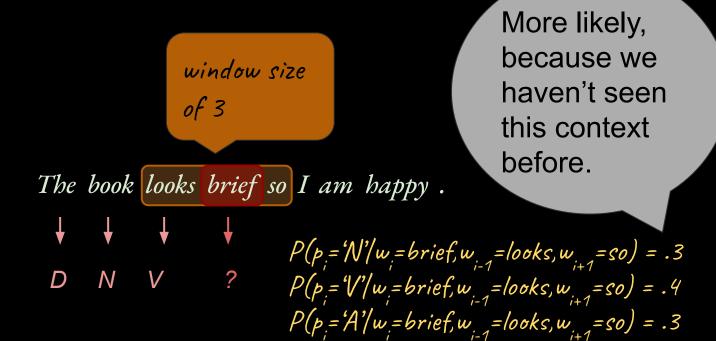

(13.3)

Thematic Role	Definition
AGENT	The volitional causer of an event
EXPERIENCER	The experiencer of an event
FORCE	The non-volitional causer of the event
THEME	The participant most directly affected by an event
RESULT	The end product of an event
CONTENT	The proposition or content of a propositional event
INSTRUMENT	An instrument used in an event
BENEFICIARY	The beneficiary of an event
SOURCE	The origin of the object of a transfer event
GOAL	The destination of an object of a transfer event

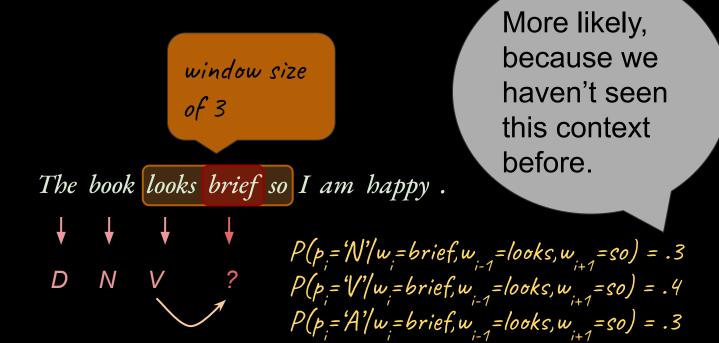
Thematic Role	Definition
AGENT	The volitional causer of an event
EXPERIENCER	The experiencer of an event
FORCE	The non-volitional causer of the event
THEME	The participant most directly affected by an event

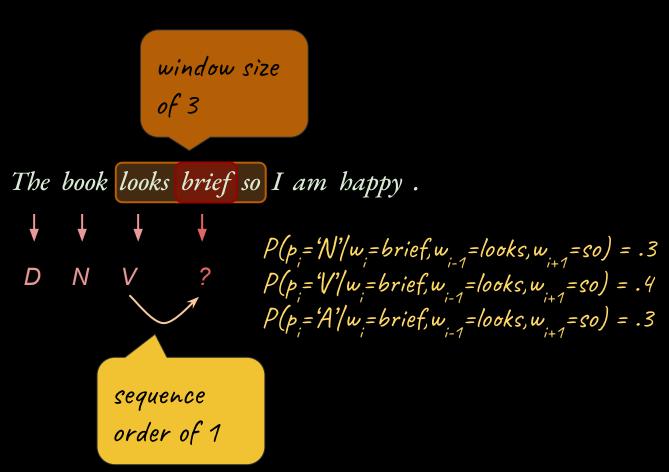
Roles are restricted to **nouns**, but signalled through the **verb** and other parts of speech.

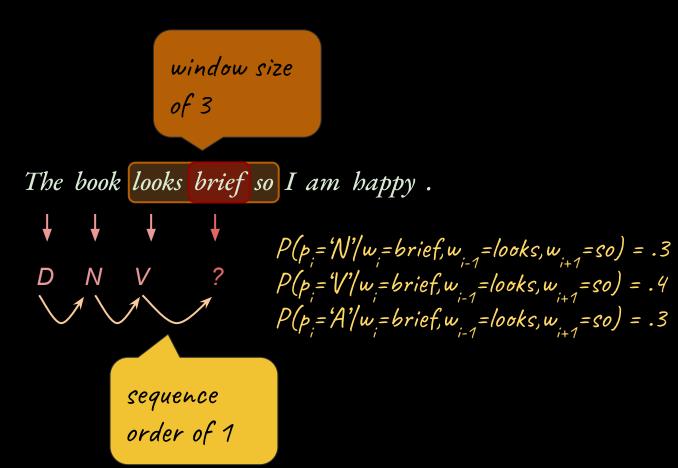
Parts-of-speech: Syntactic categories of words, given context.

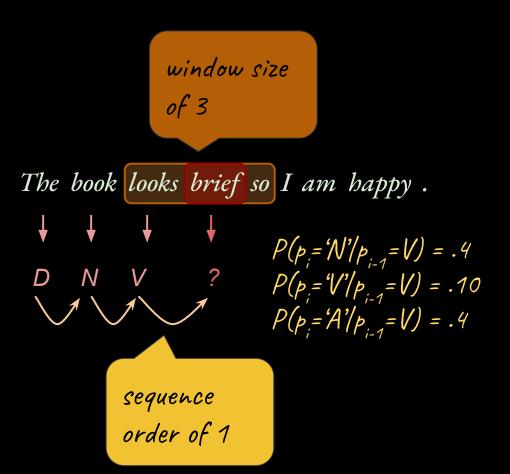

Dependency Parse: Finding the syntactic relationships between words. Semantics often plays a part.

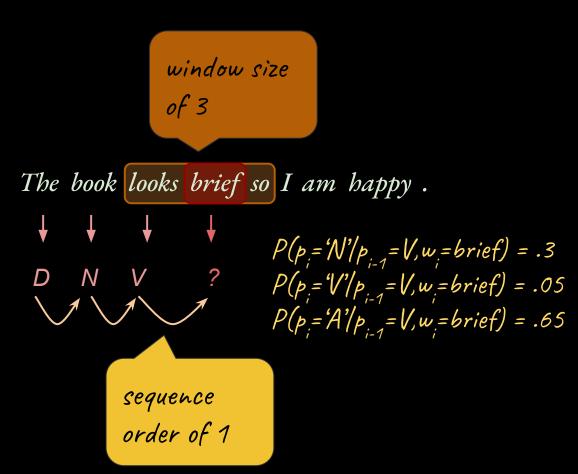
Shift-Reduce Parsing: A particular approach to dependency parsing Uses classifiers for 3 actions over stack of words. Forces projective graphs.


Semantic Roles: Bridges syntax with semantics. Verbs as predicates (functions) taking arguments.


Supplemental Material


From POS Tagging to Sequence Models

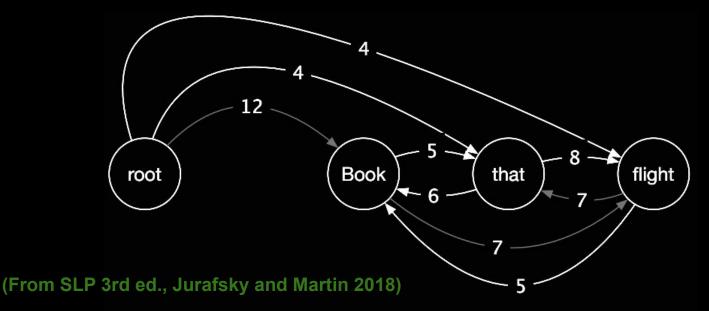



From POS Tagging to Sequence Models

Sequence modeling

-- Tasks that in which a current label is dependent on previous labels within a sequence.

More generally: tasks that can leverage the order of words.

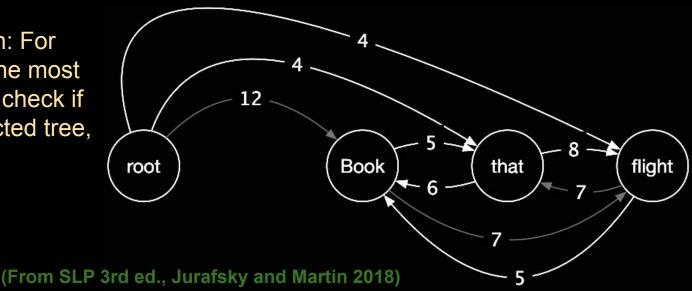

Most basic example: *Language Modeling* -- Predicting the next word given previous.

Graph-based Approaches

A Graph: G = [(V1, A1), (V1, A2), ...] (vertices and arcs) Restrictions:

- 1) Single designated ROOT with no incoming arcs
- 2) Every vertex only has one head (parent, governer); i.e. only one incoming arc
- 3) unique path from ROOT to every vertex

Idea: Search through all possible trees and pick best.

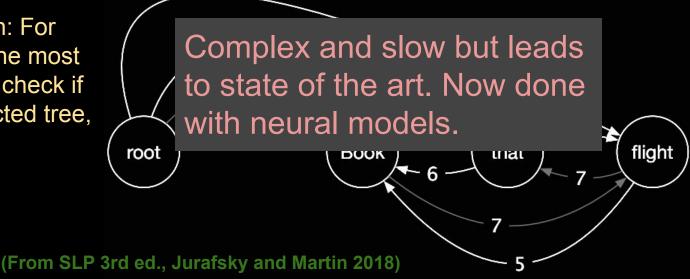


Graph-based Approaches

A Graph: G = [(V1, A1), (V1, A2), ...] (vertices and arcs) Restrictions:

- 1) Single designated ROOT with no incoming arcs
- 2) Every vertex only has one head (parent, governer); i.e. only one incoming arc
- 3) unique path from ROOT to every vertex
- Idea: Search through all possible trees and pick best.

General approach: For each word, pick the most likely head. Then check if still a fully-connected tree, and adjust.



Graph-based Approaches

A Graph: G = [(V1, A1), (V1, A2), ...] (vertices and arcs) Restrictions:

- 1) Single designated ROOT with no incoming arcs
- 2) Every vertex only has one head (parent, governer); i.e. only one incoming arc
- 3) unique path from ROOT to every vertex
- Idea: Search through all possible trees and pick best.

General approach: For each word, pick the most likely head. Then check if still a fully-connected tree, and adjust.

